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Abstract. We consider four-dimensional Riemannian manifolds with
commuting higher order Jacobi operators defined on two-dimensional or-
thogonal subspaces (polygons) and on their orthogonal subspaces.

More precisely, we discuss higher order Jacobi operator J(X) and
its commuting associated operator j(XJ‘) induced by the orthogonal
complement X of the vector X, i. e. J(X)oJ(X*) =T (X )oTJ(X).

At the end some new central theorems have been cited. The latter
are due to P. Gilkey, E. Puffini and V. Videv, and have been recently
obtained.
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1. Preliminaries

Let (M, g) be a n-dimensional Riemannian manifold with a metric tensor
g. Tangent space at a point p € M we denote by M,, and let S,M be the set
of unit vectors in M, i. e. S,(M) :={z € M,| |lg(z,2)| = 1}. Let F(M) be
the algebra of all smooth functions on M and X (M) be the F(M)-module of
all smooth vector fields over M. Let also

R(X,Y)Z =VxVyZ - VyVxZ - VixviZ, X,Y,Z e X(M)

LCorresponding author

167



Zhivko Zhelev, Maria Ivanova and Veselin Videv

be the (1,3) curvature tensor of the Levi-Civita connection V. We define
R(X,Y,Z,U) :=g(R(X,Y, Z),U)

to be the associated (0,4)-curvature tensor which satisfied the following alge-
braic properties:

) R(X,Y,Z,U) = —R(Y,X,2,U),

i) R(X,Y,Z,U)=—R(X,Y,U,Z2),

i) R(X,Y,Z,U)+ R(Y,Z,X,U)+ R(Z,X,Y,U) =0 (first Bianchi identity),
iv) R(X,Y,Z,U) = R(Z,U,X,Y).

In the Riemannian geometry the following differential equality is also true:
v) (VxR)(Y,Z,W)+ (VyR)(Z, X, W)+ (VzR)(X,Y,W) =0

(second Bianchi identity), where

(VxR)(Y,Z, W) :=
Vx(R(Y,2)W) — R(VxY,Z)W — R(Y,VxZ)W — R(Y, Z)V xW,

and VxR is the covariant derivative of the (1, 3)-curvature tensor R with re-
spect to X, X,Y,Z € X(M).
Let J: M, — M, be the Jacobi operator defined by:

(1.1) J(X)U = R(U, X, X).

One can easily see that J(X)X = 0 and ¢(J(X)Y,Z) = g(Y,J(X)2)
which means that Jacobi operator is a symmetric linear operator.

Jacobi operator can be diagonalized in the Riemannian geometry. In this
case we say that g is Osserman metric if the eigenvalues of the Jacobi operator
are constant over the tangent bundle S(M) := ¢ SpM. If (M, g) is a rank
one locally symmetric space, i. e. VR = 0, where V is the connection with all
positive or all negative sectional curvatures [14] or (M, g) is flat, i. e. R =0, the
group of local isometries acts transitively on S(M) and each Jacobi operator
has constant eigenvalues. Osserman [8] conjectured that the opposite is also
true and this was confirmed by Chi when n =4 and n = (2 mod 4) [2] and by
Nikolaevsky [7] when n # 16.

Gilkey, Stanilov and Videv [5] introduced a new operator which they called
general Jacobi operator of order k or k-order Jacobi operator. More precisely,
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if {Y;}%_, is any orthonormal basis for an arbitrary k-plane m € M, the higher
k-order Jacobi operator is defined by:

(1.2) J(m):Y — Y RYY)Yi= > JM)Y.
1<i<k 1<i<k

It can be easily verified that this operator does not depend on the basis
of m.

2. Some commutativity conditions

Another variety of problems, connected to the higher order Jacobi opera-
tor, emerged thanks to Stanilov and Videv [11]. They are connected with some
commutativity conditions forced on (1.2). Recently Brozos-Vézquez and Gilkey
[1] were able to prove the following

Theorem 2.1. Let (M, g) be a Riemannian manifold, dim M > 3. Then
(A) (M,g)is flat if 7(X)T(Y) = J(Y)J(X) for arbitrary vectors X, Y € M,;

(B) (M, g) is a manifold with a constant sectional curvature iff J(X)J(Y) =
J(Y)J(X) for arbitrary vectors X,Y € M, such that X LY.

In this paper authors will characterize four-dimensional Riemannian man-
ifolds that satisfy the following two conditions:
For arbitrary unit vector X € M,, p € M, we have:

(C1) J(X)oJ(X+) =T (X1)oT(X), where X+ is the orthogonal complement
of X in M.

For arbitrary 2-plane o« C M,,, p € M, we have

(C2) J(a)oJ(at) =T (at) o J(a), where o’ is the orthogonal complement
of a in M,.
Our main goal is to prove the following

Theorem 2.2. Let (M,g) be a four-dimensional Riemannian manifold.
Then the following are equivalent:

(a) Equality (C1) holds for arbitrary unit vector X € M,, p € M;
(b) Equality (C2) holds for arbitrary 2-plane o C My, p € M,;
(c) (M, g) is Einstein.
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Proof. (a) = (c) Let {e1,e2,e3,e4} be an orthonormal basis for M,
p € M. Curvature operator matrices J{c, ey,e;) and Jie,} then have the form:

K2 + K3 R332 Ri223 P14
(2.3) R332 K + K3 Ra113 P24
’ Ri223 Roq13 K3+ Ko P34 ’
P14 P24 P34 Ky + Koy + K3y
and
Ky Rigao Rigaz O
(2.4) Rigqo Koy Rossz 0
’ Rigas Rosss Kz 07
0 0 0 0
where p;; = p(e;,e;) : Zg (er,€ei)e;, ex) are the components of the Ricci

(0, 2)-tensor p and K;; := g(R(ez,ej)ej,ei), h,j=1,...,4.
We have the matrix equality

(25) j{el,ez,eg} ° \7{64} = j{e4} o j{el,eg,eg}a
which leads us to the equations:
(e1) K14(R1224 + R1334) + R1442(R2114 + Ra334) + Riaa3(R3114 + R3224) = 0,

(e2) Ri442(R1224+ Rissa) + Koa(R2114 + Ra334) + Roaaz(Ra114 + R3224) = 0,

(es) Ri443(Ri224 + R1334) + Roaa3(Ro114 + Ras34) + K34(R3114 + R3224) = 0.

We do a cyclic change of indecies 1 — 2 — 3 — 4 — 1 in (e1), (e2),
(e3), and get the equations

(6%) K12(Ri3s2 + Ri442) + Ro113(R1223 + Ri443) + Ro114(R1224 + Ri334) = 0,
(6%) Ro113(Ri332+ Riaa2) + Ki3(Ri223 + Ria43) + R3114(Ri224 + Ri334) = 0,

(%) Ro114(Ri332 + Ri442) + R3114(Ri223 + Ri443) + K14(R1224 + Ri334) = 0.
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Doing a cyclic change of indecies 1 — 2 — 3 — 4 — 1 in (ei), (€?)

and (e3), we get

(e3)  Kaz(Rai13+ Roaas) + Raooa(Ro114 + Rassa) + Ri2os (Riss2 + Riaaz) = 0,
(€3) R3224(R2113 + Roaa3) + Koa(R2114 + Rassa) + Ri224(Ri3s2 + R1442) = 0,
(€3)  Rizes(Ra2113+ Roaas) + Riooa(Ro114 + Rossa) + K12 (Rizs2 + Riaaz) = 0.

Another cycling change 1 — 2 — 3 — 4 — 1 in (el), (€3) and (e3)

will give us
(e3)  Ksza(Rs114+ R3224) + Ri334(Ri223 + R1a43) + Rossa(Ro113 + Roaas) = 0,
(€3)  Rizsa(Rsi1a+ Raooa) + Ki3(Ri223 + Rias) + Riss2 (Ra113 + Roasz) = 0,
(e3) Ro334(R3114 + R3224) + R1332 (R1223 + Ri443) + Ka3(R2113 + Roaaz) = 0.

Solving (e1), (e2), (es) with respect to Rig24+R1334, Ro114+ R334, R3114+
R3994, using Maple, we get:

Ri924 + Ri334 = Ro114 + Ra334 = R3114 + R3204 = 0,

since the above is in fact the trivial solution to the system of equations (eq),
(e2), (e3) which is homogeneous:

Kio  Rigao Rigss Ri224 + Ri334
Risszs Ko Rosus Rot14a + Rozza | =
Rigaz Roaas  Ksg R3114 + R3204

o O O

Analogously, solving the other two homogeneous systems (el), (e?), (e3)

and (e3), (e2), (€3) we get that
Ri332 + Risa2 = Ri223 + Riaa3 = Ri204 + Ri334 = 0,

and
Ri203 + Ri443 = Ro113 + Ro4a3 = R3114 + R3204 = 0.

From (2.3) we also get

(es) (K14 — K24)Ri332 + Ro113R1443 — Roaa3R1223 = 0,
(e5) (K14 — K34)R1223 + Ro113R1442 — RoaasRi332 = 0,
(es) (K24 — K34)Ro113 + (K13 — K12) Roaas + Ri223 R1442 — Ri332R1a43 = 0.
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By a cycling change of indecies 1 — 2 — 3 — 4 — 1 in (e4), (e5) and
(e6), we get
D (K12 — K13)Ra443 + Ro114R3224 — R3114R2334 = 0,
(e3) (K12 — K14)Ro33a + R3224R2113 — Ra114Ra443 = 0,
) (K13 — K14)R3224 + (K24 — K23)R3114 + Ro3sa Ro113 — RoaazRo114 = 0.

Repeating the same procedure two more times, we get

:) (K23 — K24)R3114 + Ri334R1223 — Ri224 R1a43 = 0,
(e2) (K23 — K12)R1443 + R3224 R1334 — Ri224R3114 = 0,
2) (K24 — Ki12)Ri334 + (K13 — K34) R1224 + R1443R3224 — R3114R1223 = 0.

6) (K34 — K13)R1224 + Rossa R1442 — RigsaRo114 = 0,
(e?) (K34 — K23)Ro114 + Ri334R1442 — Ri332R1224 = 0,
) (K13 — Kog)Riaa2 + (K24 — K14)Ri332 + Ri33aRo114 — Ra334R1224 = 0.

Further, from (64)7 (eS)a (66)§ (6411)’ (6421)7 (ei); (ej’;)’ (6%), (eg); (eé)’ (eg)’
(€3) and using that

Ro113 + Roga3 =0, Rizzo + Riga2 =0
Ri993 + Ri4a3 =0, Rigo4 + Ri334 =0
Ro114 + Ro334 = 0, Rz114 + R3204 = 0,

we get the system of equations

Ko = K3y
K13 :K24 )
K4 = Kog

with respect to the basis {e1, es, €3, e4}. The latter is equivalent to (M, g) being
an Einstein[10]. O
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(¢) = (a) Suppose (M, g) is a four-dimensional Einstein manifold and
let X € My, p € M and X + is the orthogonal complement of X. Then
p=AId, A = const., and hence

J(X)o J(XF) =T (XH) o J(X) =
J(X)o J(XH)+T(X) o T(X) = T(X) o J(X) = T(X) 0 J(X) =

T(X) o [T(X)+T(X)] = [T(X) + T(XH)] 0T (X) =

p

j(X)op—poj(X):A(j(X)OI(f—IdOJ(X))ZO.

O
Analogously, one can prove, using [9], the following

Corollary 2.1. Let (M, g) be a three-dimensional Riemannian manifold.
Then the next two conditions are equivalent:

(i) T(X)oJ(X+) =T (X1t)oJ(X) for arbitrary X, X+ € M,,pe M.

(ii) (M, g) has a constant sectional curvature k such that R(X,Y,Z) =
k(g(Y, 2)X — g(X, 2)Y), X,Y,Z € M,.

(b) = (c) Let {e1,e2,€e3,€e4} be an orthonormal basis for M,, p € M.
Then the curvature operator matrices Je, e,} and Jie, e} have the form:

Ko+ K3 0 Ry203 Ri224
0 Ko Rai13 Rai14
2.6 ey.e - )
(2:6) Trerea) Ri223 Ro113 K3+ Kos 034
Ri224 Rai14 P34 K4+ Koy
and
Kiz+ Kua P12 Ri443 Ry3sa
_ P12 Koz + Koy Roguz  Roassa
(2.7) Ttesea) = Rig43 Royus Ksy 0
R334 R334 0 K3y
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Let also
Ko+ K3 0 Ri223 Ri224
(A) = 0 Ko Ro113 Ro114
Ri223 Roniz  Kig + Kog P34
Ri224 Ro114 P34 K14+ Ko
K3+ K14 P12 Ria43  Rissa
P12 Koz + Koq Rosuz  Rossa
Ri43 Rouss K34 0
Ri334 Ro334 0 K3y

(2.8)

Simple computations for the matrix (A) give us:

ary = Ki2(Ki3 + Ki4) + Ri223R1443 + Ri334R1224,

a1z = Ki2p12 + R1223R2443 + Ra334 R1224,

a13 = Ki2Ri443 + K34 R1223,

a14 = Ki2Ri334 + K34 R1224,

az1 = Ki12p12 + R1443R2113 + Ro114R1334,

aze = K12(Kas + Ka4) + RogazRo113 + Ra114Ro334,

az3 = Kia2Roy43 + K3aRo114,

az24 = Ki12Ro334 + K34 Ro114,

az1 = (K13 + K13)Ri223 + (K13 + K23) R1443 + p12R2113 + p3aR1443,
asz = (Kasg + Kas)Ro113 + (K13 + Ko3) Roaas + p12aR1223 + p3a R334,
azs = (K13 + Ka3) K34 + Ri223R1443 + RosuzRo113,

a34 = p34K34 + R1203R1334 + Ro334R2113,

aq1 = (K13 + K14)Ri224 + (K14 + Ko4)Ri334 + p12Ro114 + p3aR14as,
as2 = (Ka3 + Ko4)Ro114 + (R14 + K24)Rossa + p12R1224 + p3aRoaas,
a43 = p34 K34 + R1443R1224 + Ro114R2334,

a4a = (K14 + K24) K34 + Ri33aR1224 + R2114R2334.
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On the other hand let

K3+ Ky P12 Ri443 Rissa
(B) = P12 Koz + Koy Raguz Ra3zg
Ri443 Ra443 K3y 0
R334 Ro334 0 K3y
Ko 0 Ri223 Ri224
0 K2 Ra113 Rai114
Rig23 Ro11z Kiz+ Kos P34
Ri204  Ronug P34 Ky + Koy

For the matrix (B) elements we derive:

bi1 = K12(K13 + K14) + Ri223R1443 + Ri334 R1204,

bi2 = Ki2p12 + R1443R2113 + Ro114R1334,

bis = (K13 + Ki4)Ri223 + (K13 + Ko3) Riaaz + p12Ro113 + p3aRisaa,

bia = (K13 + K14)Ri224 + (K14 + Kos)Ri33a + p1oRo114 + p3aRiaas,

ba1 = Ki2p12 + Ri1223R2443 + R2334R1224,

bao = K12(K23 + Kay) + RosuzRo113 + Ro114R2334,

bos = (Ka3 + Kas)Rot13 + (K13 + Ka3) Roaas + p12Ri223 + p3a Rasaa,

bos = (Ka3 + Ka4)Ro114 + (K14 + Ko4) Ros3a + p12Ri224 + p3a Roaa3,
(2.9)  b31 = K12 R443 + K34 R1293,

b3z = K12Ro443 + K34R2113,

bss = (K13 + K23) K34 + Ri23R1443 + RosuzRo113,

b34 = p34 K34 + R1443R1224 + Ro114R2443,

by1 = K12R1334 + K34R1224,

baz = K12 Ra334 + K34R2114,

byz = p34 K34 + Ri203R1334 + Ro334R2113,

bas = (K14 + K24) K34 + R334 R1224 + R2114R2334.

From [C2] we have a;2 = bi2 and according to (2.6) and (2.7), we get:

(e7) Ri223R2443 + Ra334R1224 — Ri4a3R2113 — Ro114R1334 = 0,

(es) R1903R1334 + Ro33aRo113 — R1443R1204 — Ro114R2443 = 0.
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By a cycling change of indecies 1 — 2 — 3 — 4 — 1 in (e7) and (es),
we get
(e#)  RoszaRsi1a + RisasRizs2 — Ro114R3204 — Ri223Ri442 = 0,
(eg) Ro334R1442 + R1443R3204 — Ro114R1332 — Ri223R3114 = 0.

We solve, using Maple, (e7), (es), (eX) and (e}) together and arrive at the
homogeneous system

Roqa3  Rizos —R2113 —Risa Ri223 0

(2.10) Rizzqs  Ro1iz3 —Rizaa —Ros Rosza | _ |0
—Riga2 Rz1ia Rizza  —Rsoou Ria3 0

—R3114 Riaae  R3zoos  —FRizz Ro114 0

Solving (2.8) with respect to R1223, R2334, R1443 and Rai14, we get at least
the trivial solution:

(2.11) Ro114 = Ri223 = Ri443 = Ro334 = 0.

We also have Je, s} = Tesseat a0 Tie, 0} = T{enes}, and using (2.9),
it follows that

Ro113(Ri332 + Riaa2) + Rissa(Ra114 + R3224) =0
R334 (K12 — K1y — Koy) + Ri224(K34 — K13 — K14) =0
Ross3(K12 — K13 — Ko3) + Ro113(K34 — Koz — K24) =0
(2.12) Ri924(Ri332 + Ri442) + Roaaz(R3114 + R3224) =0
R3224(R2113 + R2a43) + Ri442(R1224 + Ri334) =0
Rig42(Kas — K12 — Ki3) + Ri332(K14 — K34 — K13) =0
Ry332(R2113 + Ro443) + R3114(Ri224 + R1334) = 0

We solve (2.10) with respect to the tensor R components Risse, Riss2,
R3114, R3gaa, Ri2o4, Risss, Roi13, Ra114 using, for example Maple, and as a
result we get

Ri204(— K34 + K13 + K14) = Ri334(K12 — K14 — Koa)

2.13

( ) Ro113(— K34 + Kag + Ko4) = Rosu3(Ki2 — K13 — Ko3)
and

(2.14) Ry332 = R3224 = Ryg42 = R3114 = 0.

Further, by changing the orthonormal basis {e1,es,e3,e4} with the

€1—€ e1t+ey e3—e€ e3+ 64} and using (2.11) and
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(2.12) we receive a new system of equations with respect to the tensor curva-
ture components which is equivalent to (2.10). From there we can conclude
that

(2.15) R1334 = R2443 =0.

From (2.9), (2.11) and (2.12) it follows that all of the components R;;;x
are equal to zero for all 4,7,k =1,2,3,4.

If we reformulate the second and third equation in (2.10) by changing the
basis as shown above and transforming the curvature components using (2.9),
(2.11) and (2.12), we get

(K13 — Koz 4+ K14 — Ko4)(Ria32 + Ri3a2 + K12) =0

2.16 .
(2.16) (K13 + Koz — K14 — Ko4)(R1432 + Rigaz + K34) =0

By a cycling change of indecies 1 — 2 — 3 — 4 — 1 above and some
extra tedious computations, we get the system:

(K13 4+ K14 — Ko3 — Ko4) (K12 + Rizaz — Rig23) =0
(K12 + K14 — K23 — K34) (K13 + Ri234 — Ri423) =0

(2.17) (K12 + K13 — Koy — K34) (K14 + Ri234 — Ri342) =0 .
(K12 + Ko4 — K13 — K34) (K23 + R1234 — R1342) =0
(K12 4+ Koz — K14 — K34) (K24 + Ri234 — Ri423) =0
) )=0

(K13 + Koz — K14 — K24) (K34 + Ri3a2 — Ria32) =

Solving (2.14) and (2.15) with respect to the sectional curvature compo-
nents Ko, K13 and K4, it follows that

(2.18) Ky = Ks3, Kiz3=Ks, Ki2= Ky,

and since the basis {e1, es, €3, e4} has been arbitrary chosen in M, it follows
that (M, g) is Einstein [10]. O
(b) = (a) If (M, g) is an Einstein manifold then p = AId, A = const.,
and if o is a 2-plane in M, p € M, it follows that
J(a)oT(at) ~ T
J(@)oJ(at) +T(a) o J(a) — T(a) o
J(@)o [T(e) + T ()] = [T(a) + T(a)] 0T (a) =

P P
J(@)op—poJ(a)=A(T(a)old—IdoT(a)) = 0.
That completes the proof. O
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3. New approaches and results

Recently Gilkey, Puffini and Videv [4] were able to generalize the results
above. They define M := (V, (-, -), A) to be a 0-model if (-, -) is a non-degenerate
inner product of signature (p,q) on a finite dimensional vector space V of di-
mension m = p + ¢ and if A € ®*V* is an algebraic curvature tensor.

Let Gr, 5(V,(:,-)) be the Grassmannian of all non-degenerate linear sub-
spaces of V' which have signature (r, s); the pair (r,s) is said to be admissible
if and only if Gr, 4(V, (-,-)) is non-empty and does not consist of a single point
or, equivalently, if the inequalities 0 <7 <p,0<s<g,and 1 <r4+s<m-—1
are satisfied. Let [A, B] := AB — BA denote the commutator of two linear
maps. Then they establish the following result:

Theorem 3.1. Let MM = (V,(-,-), A) be a 0-model. The following asser-
tions are equivalent; if any is satisfied, then we shall say that 9t is a Puffini—
Videv 0-model.

1. There exists (rq, Sp) admissible so that

J(m) o J(nt)=T(rt) o J(r) for all m € Gryy 50 (V, (-, 4)).
2. J(m)o J(rt) = J(7t) o J(x) for every non-degenerate subspace 7.
3. [J(n), p] =0 for every non-degenerate subspace .

We say that 9t = (V, (-,), A) is decomposible if there exists a non-trivial
orthogonal decomposition V' = V; & V5 which decomposes A = A; @ As; in this
setting, we shall write 9 = 9t @ My where M, := (V;, (-, -)|v,, A;). One says
that 91 is indecomposible if MM is not decomposible.

By Theorem 3.1, any Einstein 0-model is Puffini-Videv. More generally,
the direct sum of Einstein Puffini—Videv models is again Puffini—Videv; the
converse holds in the Riemannian setting:

Theorem 3.2. Let M = (V, (-,-), A) be a Riemannian 0-model. Then M
is Puffini—Videv if and only if M = My @ - - - B M. where the IM,; are Finstein.

In the pseudo-Riemannian setting, a somewhat weaker result can be estab-
lished. One says that a 0-model is pseudo-FEinstein either if the Ricci operator
p has only one real eigenvalue A or if the Ricci operator p has two complex
eigenvalues A1, Ao with A\; = Xo. This does not imply that p is diagonalizable
in the higher signature setting and hence 9t need not be Einstein.

Theorem 3.3. Let M = (V, (-,-), A) be a 0-model of arbitrary signature.
If M is Puffini—Videv, then we may decompose 9t = M, & --- & My, as the
direct sum of pseudo-Einstein 0-models ;.
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YETUPNIMEPHUN PIMAHOBI MHOI'OOBPA3UA
C KOMYTHUPAIIIN OIIEPATOPH HA AKOBU

Kusko 2KejseB, Mapua NBanosa u Becenrun Bunesn

Pesrome. Pazriexxmar ce YeTHPUMEPHN PUMAHOBH MHOIO00OPA3NUA C KOMY-
THpAIU orepaTopu Ha KoOU BbPXY ABYMEPHU IUIOMAIKH U TEXHUTE OPTOrO-
HAJIHU TIOAITPOCTPAHCTBA.

IMo-touno pasriexna ce oneparopsbr Ha Axobu J(X), Ko#iTo KOMyTHpa
¢ omeparopa J(X*), HHIyIHpaH OT OPTOrOHATHOTO JOMWbLIHeHHe X, T. e.
J(X)o J(XH) =T (X*) o T(X).

Hakpas ca nmuTupann u HIKOW HOBH pe3yaTarTh, noaydenu oT II. I'makm,

E. Ilydpwunn u B. Buzes.
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