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Abstract. We consider four-dimensional Riemannian manifolds with
commuting higher order Jacobi operators defined on two-dimensional or-
thogonal subspaces (polygons) and on their orthogonal subspaces.

More precisely, we discuss higher order Jacobi operator J (X) and
its commuting associated operator J (X⊥) induced by the orthogonal
complement X⊥ of the vector X, i. e. J (X)◦J (X⊥) = J (X⊥)◦J (X).

At the end some new central theorems have been cited. The latter
are due to P. Gilkey, E. Puffini and V. Videv, and have been recently
obtained.
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1. Preliminaries

Let (M, g) be a n-dimensional Riemannian manifold with a metric tensor
g. Tangent space at a point p ∈ M we denote by Mp, and let SpM be the set
of unit vectors in Mp, i. e. Sp(M) := {z ∈ Mp | ‖g(z, z)‖ = 1}. Let F(M) be
the algebra of all smooth functions on M and X (M) be the F(M)-module of
all smooth vector fields over M . Let also

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ X (M)

1Corresponding author
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be the (1, 3) curvature tensor of the Levi-Civita connection ∇. We define

R(X,Y, Z, U) := g(R(X, Y, Z), U)

to be the associated (0, 4)-curvature tensor which satisfied the following alge-
braic properties:

i) R(X,Y, Z, U) = −R(Y,X, Z, U),
ii) R(X, Y, Z, U) = −R(X,Y, U, Z),
iii) R(X, Y, Z, U) + R(Y,Z, X,U) + R(Z, X, Y, U) = 0 (first Bianchi identity),
iv) R(X, Y, Z, U) = R(Z, U,X, Y ).

In the Riemannian geometry the following differential equality is also true:

v) (∇XR)(Y, Z, W ) + (∇Y R)(Z, X, W ) + (∇ZR)(X, Y,W ) = 0

(second Bianchi identity), where

(∇XR)(Y, Z, W ) :=
∇X(R(Y,Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW,

and ∇XR is the covariant derivative of the (1, 3)-curvature tensor R with re-
spect to X, X, Y, Z ∈ X (M).

Let J : Mp −→ Mp be the Jacobi operator defined by:

(1.1) J (X)U = R(U,X, X).

One can easily see that J (X)X = 0 and g(J (X)Y, Z) = g(Y,J (X)Z)
which means that Jacobi operator is a symmetric linear operator.

Jacobi operator can be diagonalized in the Riemannian geometry. In this
case we say that g is Osserman metric if the eigenvalues of the Jacobi operator
are constant over the tangent bundle S(M) :=

⋃
p∈M SpM . If (M, g) is a rank

one locally symmetric space, i. e. ∇R = 0, where ∇ is the connection with all
positive or all negative sectional curvatures [14] or (M, g) is flat, i. e. R = 0, the
group of local isometries acts transitively on S(M) and each Jacobi operator
has constant eigenvalues. Osserman [8] conjectured that the opposite is also
true and this was confirmed by Chi when n = 4 and n ≡ (2 mod 4) [2] and by
Nikolaevsky [7] when n 6= 16.

Gilkey, Stanilov and Videv [5] introduced a new operator which they called
general Jacobi operator of order k or k-order Jacobi operator. More precisely,
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if {Yi}k
i=1 is any orthonormal basis for an arbitrary k-plane π ∈ Mp, the higher

k-order Jacobi operator is defined by:

(1.2) J (π) : Y −→
∑

1≤i≤k

R(Y, Yi)Yi =
∑

1≤i≤k

J (Yi)Y.

It can be easily verified that this operator does not depend on the basis
of π.

2. Some commutativity conditions

Another variety of problems, connected to the higher order Jacobi opera-
tor, emerged thanks to Stanilov and Videv [11]. They are connected with some
commutativity conditions forced on (1.2). Recently Brozos-Vázquez and Gilkey
[1] were able to prove the following

Theorem 2.1. Let (M, g) be a Riemannian manifold, dim M ≥ 3. Then

(A) (M, g) is flat iff J (X)J (Y ) = J (Y )J (X) for arbitrary vectors X, Y ∈Mp;

(B) (M, g) is a manifold with a constant sectional curvature iff J (X)J (Y ) =
J (Y )J (X) for arbitrary vectors X, Y ∈ Mp such that X ⊥ Y .

In this paper authors will characterize four-dimensional Riemannian man-
ifolds that satisfy the following two conditions:

For arbitrary unit vector X ∈ Mp, p ∈ M , we have:

(C1) J (X)◦J (X⊥) = J (X⊥)◦J (X), where X⊥ is the orthogonal complement
of X in Mp.

For arbitrary 2-plane α ⊂ Mp, p ∈ M , we have

(C2) J (α) ◦ J (α⊥) = J (α⊥) ◦ J (α), where α⊥ is the orthogonal complement
of α in Mp.

Our main goal is to prove the following

Theorem 2.2. Let (M, g) be a four-dimensional Riemannian manifold.
Then the following are equivalent:

(a) Equality (C1) holds for arbitrary unit vector X ∈ Mp, p ∈ M ;

(b) Equality (C2) holds for arbitrary 2-plane α ⊂ Mp, p ∈ Mp;

(c) (M, g) is Einstein.
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Proof. (a) =⇒ (c) Let {e1, e2, e3, e4} be an orthonormal basis for Mp,
p ∈ M . Curvature operator matrices J{e1,e2,e3} and J{e4} then have the form:

(2.3)




K12 + K13 R1332 R1223 ρ14

R1332 K12 + K13 R2113 ρ24

R1223 R2113 K13 + K23 ρ34

ρ14 ρ24 ρ34 K14 + K24 + K34


 ,

and

(2.4)




K14 R1442 R1443 0
R1442 K24 R2443 0
R1443 R2443 K34 0

0 0 0 0


 ,

where ρij = ρ(ei, ej) :=
4∑

k=1

g(R(ek, ei)ej , ek) are the components of the Ricci

(0, 2)-tensor ρ and Kij := g(R(ei, ej)ej , ei), i, j = 1, . . . , 4.
We have the matrix equality

(2.5) J{e1,e2,e3} ◦ J{e4} = J{e4} ◦ J{e1,e2,e3},

which leads us to the equations:

(e1) K14(R1224 +R1334)+R1442(R2114 +R2334)+R1443(R3114 +R3224) = 0,

(e2) R1442(R1224 +R1334)+K24(R2114 +R2334)+R2443(R3114 +R3224) = 0,

(e3) R1443(R1224 +R1334)+R2443(R2114 +R2334)+K34(R3114 +R3224) = 0.

We do a cyclic change of indecies 1 −→ 2 −→ 3 −→ 4 −→ 1 in (e1), (e2),
(e3), and get the equations

(e1
1) K12(R1332 +R1442)+R2113(R1223 +R1443)+R2114(R1224 +R1334) = 0,

(e2
1) R2113(R1332 +R1442)+K13(R1223 +R1443)+R3114(R1224 +R1334) = 0,

(e3
1) R2114(R1332 +R1442)+R3114(R1223 +R1443)+K14(R1224 +R1334) = 0.
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Doing a cyclic change of indecies 1 −→ 2 −→ 3 −→ 4 −→ 1 in (e1
1), (e2

1)
and (e1

3), we get

(e1
2) K23(R2113 +R2443)+R3224(R2114 +R2334)+R1223(R1332 +R1442) = 0,

(e2
2) R3224(R2113 +R2443)+K24(R2114 +R2334)+R1224(R1332 +R1442) = 0,

(e3
2) R1223(R2113 +R2443)+R1224(R2114 +R2334)+K12(R1332 +R1442) = 0.

Another cycling change 1 −→ 2 −→ 3 −→ 4 −→ 1 in (e1
2), (e2

2) and (e3
2)

will give us

(e1
3) K34(R3114 +R3224)+R1334(R1223 +R1443)+R2334(R2113 +R2443) = 0,

(e2
3) R1334(R3114 +R3224)+K13(R1223 +R1443)+R1332(R2113 +R2443) = 0,

(e3
3) R2334(R3114 +R3224)+R1332(R1223 +R1443)+K23(R2113 +R2443) = 0.

Solving (e1), (e2), (e3) with respect to R1224+R1334, R2114+R2334, R3114+
R3224, using Maple, we get:

R1224 + R1334 = R2114 + R2334 = R3114 + R3224 = 0,

since the above is in fact the trivial solution to the system of equations (e1),
(e2), (e3) which is homogeneous:




K12 R1442 R1443

R1442 K24 R2443

R1443 R2443 K34







R1224 + R1334

R2114 + R2334

R3114 + R3224


 =




0
0
0


 .

Analogously, solving the other two homogeneous systems (e1
1), (e2

1), (e3
1)

and (e1
3), (e2

3), (e3
3) we get that

R1332 + R1442 = R1223 + R1443 = R1224 + R1334 = 0,

and
R1223 + R1443 = R2113 + R2443 = R3114 + R3224 = 0.

From (2.3) we also get

(e4) (K14 −K24)R1332 + R2113R1443 −R2443R1223 = 0,

(e5) (K14 −K34)R1223 + R2113R1442 −R2443R1332 = 0,

(e6) (K24−K34)R2113 +(K13−K12)R2443 +R1223R1442−R1332R1443 = 0.
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By a cycling change of indecies 1 −→ 2 −→ 3 −→ 4 −→ 1 in (e4), (e5) and
(e6), we get

(e1
4) (K12 −K13)R2443 + R2114R3224 −R3114R2334 = 0,

(e2
4) (K12 −K14)R2334 + R3224R2113 −R3114R2443 = 0,

(e3
4) (K13−K14)R3224 +(K24−K23)R3114 +R2334R2113−R2443R2114 = 0.

Repeating the same procedure two more times, we get

(e1
5) (K23 −K24)R3114 + R1334R1223 −R1224R1443 = 0,

(e2
5) (K23 −K12)R1443 + R3224R1334 −R1224R3114 = 0,

(e3
5) (K24−K12)R1334 +(K13−K34)R1224 +R1443R3224−R3114R1223 = 0.

and

(e1
6) (K34 −K13)R1224 + R2334R1442 −R1332R2114 = 0,

(e2
6) (K34 −K23)R2114 + R1334R1442 −R1332R1224 = 0,

(e3
6) (K13−K23)R1442 +(K24−K14)R1332 +R1334R2114−R2334R1224 = 0.

Further, from (e4), (e5), (e6); (e1
4), (e2

4), (e3
4); (e1

5), (e2
5), (e3

5); (e1
6), (e2

6),
(e3

6) and using that

R2113 + R2443 = 0, R1332 + R1442 = 0
R1223 + R1443 = 0, R1224 + R1334 = 0
R2114 + R2334 = 0, R3114 + R3224 = 0,

we get the system of equations
∣∣∣∣∣∣∣∣∣∣

K12 = K34

K13 = K24

K14 = K23

,

with respect to the basis {e1, e2, e3, e4}. The latter is equivalent to (M, g) being
an Einstein[10]. ¤
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(c) =⇒ (a) Suppose (M, g) is a four-dimensional Einstein manifold and
let X ∈ Mp, p ∈ M and X⊥ is the orthogonal complement of X. Then
ρ = λ Id, λ = const., and hence

J (X) ◦ J (X⊥)− J (X⊥) ◦ J (X) =

J (X) ◦ J (X⊥) + J (X) ◦ J (X)− J (X) ◦ J (X)− J (X⊥) ◦ J (X) =

J (X) ◦ [J (X⊥) + J (X)
]

︸ ︷︷ ︸
ρ

− [J (X) + J (X⊥)
]

︸ ︷︷ ︸
ρ

◦J (X) =

J (X) ◦ ρ− ρ ◦ J (X) = λ (J (X) ◦ Id− Id ◦J (X)) = 0.

¤
Analogously, one can prove, using [9], the following

Corollary 2.1. Let (M, g) be a three-dimensional Riemannian manifold.
Then the next two conditions are equivalent:

(i) J (X) ◦ J (X⊥) = J (X⊥) ◦ J (X) for arbitrary X, X⊥ ∈ Mp, p ∈ M .

(ii) (M, g) has a constant sectional curvature κ such that R(X, Y, Z) =
κ(g(Y, Z)X − g(X, Z)Y ), X, Y, Z ∈ Mp.

(b) =⇒ (c) Let {e1, e2, e3, e4} be an orthonormal basis for Mp, p ∈ M .
Then the curvature operator matrices J{e1,e2} and J{e3,e4} have the form:

(2.6) J{e1,e2} =




K12 + K13 0 R1223 R1224

0 K12 R2113 R2114

R1223 R2113 K13 + K23 ρ34

R1224 R2114 ρ34 K14 + K24


 ,

and

(2.7) J{e3,e4} =




K13 + K14 ρ12 R1443 R1334

ρ12 K23 + K24 R2443 R2334

R1443 R2443 K34 0
R1334 R2334 0 K34


 .
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Let also

(A) =




K12 + K13 0 R1223 R1224

0 K12 R2113 R2114

R1223 R2113 K13 + K23 ρ34

R1224 R2114 ρ34 K14 + K24







K13 + K14 ρ12 R1443 R1334

ρ12 K23 + K24 R2443 R2334

R1443 R2443 K34 0
R1334 R2334 0 K34


 .

Simple computations for the matrix (A) give us:

a11 = K12(K13 + K14) + R1223R1443 + R1334R1224,

a12 = K12ρ12 + R1223R2443 + R2334R1224,

a13 = K12R1443 + K34R1223,

a14 = K12R1334 + K34R1224,

a21 = K12ρ12 + R1443R2113 + R2114R1334,

a22 = K12(K23 + K24) + R2443R2113 + R2114R2334,

a23 = K12R2443 + K34R2114,

a24 = K12R2334 + K34R2114,

a31 = (K13 + K13)R1223 + (K13 + K23)R1443 + ρ12R2113 + ρ34R1443,(2.8)
a32 = (K23 + K24)R2113 + (K13 + K23)R2443 + ρ12R1223 + ρ34R2334,

a33 = (K13 + K23)K34 + R1223R1443 + R2443R2113,

a34 = ρ34K34 + R1223R1334 + R2334R2113,

a41 = (K13 + K14)R1224 + (K14 + K24)R1334 + ρ12R2114 + ρ34R1443,

a42 = (K23 + K24)R2114 + (R14 + K24)R2334 + ρ12R1224 + ρ34R2443,

a43 = ρ34K34 + R1443R1224 + R2114R2334,

a44 = (K14 + K24)K34 + R1334R1224 + R2114R2334.
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On the other hand let

(B) =




K13 + K14 ρ12 R1443 R1334

ρ12 K23 + K24 R2443 R2334

R1443 R2443 K34 0
R1334 R2334 0 K34







K12 0 R1223 R1224

0 K12 R2113 R2114

R1223 R2113 K13 + K23 ρ34

R1224 R2114 ρ34 K14 + K24


 .

For the matrix (B) elements we derive:

b11 = K12(K13 + K14) + R1223R1443 + R1334R1224,

b12 = K12ρ12 + R1443R2113 + R2114R1334,

b13 = (K13 + K14)R1223 + (K13 + K23)R1443 + ρ12R2113 + ρ34R1334,

b14 = (K13 + K14)R1224 + (K14 + K24)R1334 + ρ12R2114 + ρ34R1443,

b21 = K12ρ12 + R1223R2443 + R2334R1224,

b22 = K12(K23 + K24) + R2443R2113 + R2114R2334,

b23 = (K23 + K24)R2113 + (K13 + K23)R2443 + ρ12R1223 + ρ34R2334,

b24 = (K23 + K24)R2114 + (K14 + K24)R2334 + ρ12R1224 + ρ34R2443,

b31 = K12R1443 + K34R1223,(2.9)
b32 = K12R2443 + K34R2113,

b33 = (K13 + K23)K34 + R1223R1443 + R2443R2113,

b34 = ρ34K34 + R1443R1224 + R2114R2443,

b41 = K12R1334 + K34R1224,

b42 = K12R2334 + K34R2114,

b43 = ρ34K34 + R1223R1334 + R2334R2113,

b44 = (K14 + K24)K34 + R1334R1224 + R2114R2334.

From [C2] we have a12 = b12 and according to (2.6) and (2.7), we get:

(e7) R1223R2443 + R2334R1224 −R1443R2113 −R2114R1334 = 0,

(e8) R1223R1334 + R2334R2113 −R1443R1224 −R2114R2443 = 0.
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By a cycling change of indecies 1 −→ 2 −→ 3 −→ 4 −→ 1 in (e7) and (e8),
we get

(e1
7) R2334R3114 + R1443R1332 −R2114R3224 −R1223R1442 = 0,

(e1
8) R2334R1442 + R1443R3224 −R2114R1332 −R1223R3114 = 0.

We solve, using Maple, (e7), (e8), (e1
7) and (e1

8) together and arrive at the
homogeneous system

(2.10)




R2443 R1224 −R2113 −R1334

R1334 R2113 −R1224 −R2443

−R1442 R3114 R1332 −R3224

−R3114 R1442 R3224 −R1332







R1223

R2334

R1443

R2114


 =




0
0
0
0


 .

Solving (2.8) with respect to R1223, R2334, R1443 and R2114, we get at least
the trivial solution:

(2.11) R2114 = R1223 = R1443 = R2334 = 0.

We also have J{e1,e3} = J{e2,e4} and J{e1,e4} = J{e2,e3}, and using (2.9),
it follows that

(2.12)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R2113(R1332 + R1442) + R1334(R3114 + R3224) = 0
R1334(K12 −K14 −K24) + R1224(K34 −K13 −K14) = 0
R2443(K12 −K13 −K23) + R2113(K34 −K23 −K24) = 0
R1224(R1332 + R1442) + R2443(R3114 + R3224) = 0
R3224(R2113 + R2443) + R1442(R1224 + R1334) = 0
R1442(K23 −K12 −K13) + R1332(K14 −K34 −K13) = 0
R1332(R2113 + R2443) + R3114(R1224 + R1334) = 0

.

We solve (2.10) with respect to the tensor R components R1332, R1442,
R3114, R3224, R1224, R1334, R2113, R2114 using, for example Maple, and as a
result we get

(2.13)
R1224(−K34 + K13 + K14) = R1334(K12 −K14 −K24)
R2113(−K34 + K23 + K24) = R2443(K12 −K13 −K23)

and

(2.14) R1332 = R3224 = R1442 = R3114 = 0.

Further, by changing the orthonormal basis {e1, e2, e3, e4} with the

orthonormal basis
{

e1 − e2√
2

,
e1 + e2√

2
,
e3 − e4√

2
,
e3 + e4√

2

}
and using (2.11) and
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(2.12) we receive a new system of equations with respect to the tensor curva-
ture components which is equivalent to (2.10). From there we can conclude
that

(2.15) R1334 = R2443 = 0.

From (2.9), (2.11) and (2.12) it follows that all of the components Rijjk

are equal to zero for all i, j, k = 1, 2, 3, 4.
If we reformulate the second and third equation in (2.10) by changing the

basis as shown above and transforming the curvature components using (2.9),
(2.11) and (2.12), we get

(2.16)
(K13 −K23 + K14 −K24)(R1432 + R1342 + K12) = 0
(K13 + K23 −K14 −K24)(R1432 + R1342 + K34) = 0 .

By a cycling change of indecies 1 −→ 2 −→ 3 −→ 4 −→ 1 above and some
extra tedious computations, we get the system:

(2.17)

∣∣∣∣∣∣∣∣∣∣∣∣

(K13 + K14 −K23 −K24)(K12 + R1342 −R1423) = 0
(K12 + K14 −K23 −K34)(K13 + R1234 −R1423) = 0
(K12 + K13 −K24 −K34)(K14 + R1234 −R1342) = 0
(K12 + K24 −K13 −K34)(K23 + R1234 −R1342) = 0
(K12 + K23 −K14 −K34)(K24 + R1234 −R1423) = 0
(K13 + K23 −K14 −K24)(K34 + R1342 −R1432) = 0

.

Solving (2.14) and (2.15) with respect to the sectional curvature compo-
nents K12,K13 and K14, it follows that

(2.18) K14 = K23, K13 = K24, K12 = K34,

and since the basis {e1, e2, e3, e4} has been arbitrary chosen in Mp, it follows
that (M, g) is Einstein [10]. ¤

(b) =⇒ (a) If (M, g) is an Einstein manifold then ρ = λ Id, λ = const.,
and if α is a 2-plane in Mp, p ∈ M , it follows that

J (α) ◦ J (α⊥)− J (α⊥) ◦ J (α) =
J (α) ◦ J (α⊥) + J (α) ◦ J (α)− J (α) ◦ J (α)− J (α⊥) ◦ J (α) =

J (α) ◦ [J (α⊥) + J (α)
]

︸ ︷︷ ︸
ρ

− [J (α) + J (α⊥)
]

︸ ︷︷ ︸
ρ

◦J (α) =

J (α) ◦ ρ− ρ ◦ J (α) = λ (J (α) ◦ Id− Id ◦J (α)) = 0.

That completes the proof. ¤
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3. New approaches and results

Recently Gilkey, Puffini and Videv [4] were able to generalize the results
above. They define M := (V, 〈·, ·〉, A) to be a 0-model if 〈·, ·〉 is a non-degenerate
inner product of signature (p, q) on a finite dimensional vector space V of di-
mension m = p + q and if A ∈ ⊗4V ∗ is an algebraic curvature tensor.

Let Grr,s(V, 〈·, ·〉) be the Grassmannian of all non-degenerate linear sub-
spaces of V which have signature (r, s); the pair (r, s) is said to be admissible
if and only if Grr,s(V, 〈·, ·〉) is non-empty and does not consist of a single point
or, equivalently, if the inequalities 0 ≤ r ≤ p, 0 ≤ s ≤ q, and 1 ≤ r + s ≤ m− 1
are satisfied. Let [A, B] := AB − BA denote the commutator of two linear
maps. Then they establish the following result:

Theorem 3.1. Let M = (V, 〈·, ·〉, A) be a 0-model. The following asser-
tions are equivalent; if any is satisfied, then we shall say that M is a Puffini–
Videv 0-model.

1. There exists (r0, s0) admissible so that
J (π) ◦ J (π⊥) = J (π⊥) ◦ J (π) for all π ∈ Grr0,s0(V, 〈·, ·〉).

2. J (π) ◦ J (π⊥) = J (π⊥) ◦ J (π) for every non-degenerate subspace π.

3. [J (π), ρ] = 0 for every non-degenerate subspace π.

We say that M = (V, 〈·, ·〉, A) is decomposible if there exists a non-trivial
orthogonal decomposition V = V1⊕V2 which decomposes A = A1⊕A2; in this
setting, we shall write M = M1 ⊕M2 where Mi := (Vi, 〈·, ·〉|Vi , Ai). One says
that M is indecomposible if M is not decomposible.

By Theorem 3.1, any Einstein 0-model is Puffini–Videv. More generally,
the direct sum of Einstein Puffini–Videv models is again Puffini–Videv; the
converse holds in the Riemannian setting:

Theorem 3.2. Let M = (V, 〈·, ·〉, A) be a Riemannian 0-model. Then M
is Puffini–Videv if and only if M = M1 ⊕ · · · ⊕Mk where the Mi are Einstein.

In the pseudo-Riemannian setting, a somewhat weaker result can be estab-
lished. One says that a 0-model is pseudo-Einstein either if the Ricci operator
ρ has only one real eigenvalue λ or if the Ricci operator ρ has two complex
eigenvalues λ1, λ2 with λ̄1 = λ2. This does not imply that ρ is diagonalizable
in the higher signature setting and hence M need not be Einstein.

Theorem 3.3. Let M = (V, 〈·, ·〉, A) be a 0-model of arbitrary signature.
If M is Puffini–Videv, then we may decompose M = M1 ⊕ · · · ⊕ Mk as the
direct sum of pseudo-Einstein 0-models Mi.
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×ÅÒÈÐÈÌÅÐÍÈ ÐÈÌÀÍÎÂÈ ÌÍÎÃÎÎÁÐÀÇÈß
Ñ ÊÎÌÓÒÈÐÀÙÈ ÎÏÅÐÀÒÎÐÈ ÍÀ ßÊÎÁÈ

Æèâêî Æåëåâ, Ìàðèÿ Èâàíîâà è Âåñåëèí Âèäåâ

Ðåçþìå. Ðàçãëåæäàò ñå ÷åòèðèìåðíè ðèìàíîâè ìíîãîîáðàçèÿ ñ êîìó-
òèðàùè îïåðàòîðè íà ßêîáè âúðõó äâóìåðíè ïëîùàäêè è òåõíèòå îðòîãî-
íàëíè ïîäïðîñòðàíñòâà.

Ïî-òî÷íî ðàçãëåæäà ñå îïåðàòîðúò íà ßêîáè J (X), êîéòî êîìóòèðà
ñ îïåðàòîðà J (X⊥), èíäóöèðàí îò îðòîãîíàëíîòî äîïúëíåíèå X⊥, ò. å.
J (X) ◦ J (X⊥) = J (X⊥) ◦ J (X).

Íàêðàÿ ñà öèòèðàíè è íÿêîè íîâè ðåçóëòàòè, ïîëó÷åíè îò Ï. Ãèëêè,
Å. Ïóôèíè è Â. Âèäåâ.
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