I[IJTOBANBCKN YHUBEPCUTET “ITANCUI XNJIEHJIAPCKIT’, BhJITAPUA
HAVYHU TPYOJOBE, TOM 36, KH. 3, 2009 - MATEMATUKA
PLOVDIV UNIVERSITY “PAISSIT HILENDARSKI”, BULGARIA
SCIENTIFIC WORKS, VOL. 36, BOOK 3, 2009 - MATHEMATICS

L,-EQUIVALENCE BETWEEN TWO NONLINEAR
IMPULSE DIFFERENTIAL EQUATIONS WITH
UNBOUNDED LINEAR PARTS AND ITS
APPLICATION FOR PARTIAL IMPULSE
DIFFERENTIAL EQUATIONS

A. Georgieva, S. Kostadinov

Abstract. An L,-equivalence between two impulse differential equa-
tions with unbounded linear parts is proved by means of the Schauder-
Tychonoft’s fixed point theorem. An example of the theory of the partial
impulse differential equations of parabolic type is given.
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1. Introduction

We study an equivalence in L, (1 < p < 0o0) between two ordinary impulse
differential equations with a possibly unbounded linear part. This means that
to every bounded solution of the first equation there corresponds a bounded
solution to the second equation such that their difference is in L, and vice
versa. In Theorem 1 we prove the Ly-equivalence making use of the Schauder-
Tychonoff’s fixed point principle. Further we give an example with an im-
portant application in physics. We consider two partial impulse differential
equations with elliptic linear parts and reduce them to two ordinary impulse
differential equations. These equations satisfy the conditions of Theorem 1
and are therefore L,-equivalent. In this case, we establish ” L,-dependence”
between the solutions of two partial equations.
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2. Statement of the problem

Let X be a Banach space with norm ||.|| and identity I.
By D(T) C X we will denote the domain of the operator T': D(T) — X.
We consider the following two impulse differential equations

(1) d;i = Ai(t)ui + fi(t,u;) for t #t,
(2) ui(t) = Qh(uitn)) + hiy(ui(ty)) for n=1,2, ..,

where A;(t) : D(A;(t)) — X (t € Ry) and Q¢ : D(Q!) — D(A;(tn)) (i = 1,2)
are linear (possibly unbounded) operators. The sets D(A4;(t)) and D(Q?)) (i =
1,2; t >0, n =1,2,...) are dense in X. The functions f;(.,.) : Ry x X —» X
and hf, : X — X(n = 1,2,...) are continuous. The points of jump ¢, satisfy
the following conditions 0 = t, < t; < ... < t, < ..., nILH;O t, = oco. We set
Qi =1, hi(u)=0 (i=1,2, ue X).

Furthermore, we assume that all considered functions are left continuous.

Let U;(t,s) (i = 1,2; 0 < s < t) be Cauchy operators of the linear ordinary
equations

dui .
(3) e Ai(tu; (1=1,2).
It is easy to prove that the functions wu;(t) = Vi(¢,s)&;
for & € D(A;(s)) (i =1,2) with
(4) Vi(t,s) = Ui(t,t2)QuUi(tn, tn—1) Q1 Q1 Ui(tk, )
(0 < s <t <t, <t)satisfy the linear impulse Cauchy problems
du;
(5) :t = A;(t)u; for t#t,
(6) ui () = Q1 (u4(t,)) for n=1,2,
(7) wi(s)=¢& (i=1,2)

Let us note that the operators V;(t,s) (i = 1,2) are bounded if one of the
following conditions holds.

1. Q\U;(tn,tn—1) are bounded operators (i = 1,2;
2. Ui(tny1,tn)Qt are bounded operators (i = 1,
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Definition 1. The solutions of integral equations
t

(8) ui(t):Vi(t,s)éiJr/Vi(t,T)fi(T,uz Ndr+ S Vit ) (ui(t)

s s<tnp<t

for 0 < s <t, & € D(A(s)), ui(s) = & are called solutions of the impulse
equations (1), (2) (i = 1,2).

By L,(X), 1 < p < oo we denote the space of all functions u : ]R+ — X for

which f||u [Pdt < oo with norm [ul, = f||u |pdt . Set
BT:{ueX: lul] < r}.

Definition 2. The equation (1), (2) for i = 2 is called Ly-equivalent to
the equation (1),(2) for ¢ = 1 in the ball B,, if there exists p > 0 such that
for any solution ul(t) of (1),(2) (i = 1) lying in the ball B, there exists a
solution us(t) of (1),(2) (¢ = 2) lying in the ball B,,, and satisfying the
relation ua(t) — u1(t) € L,(X). If equation (1),(2) (i = 2) is Ly-equivalent
to equation (1),(2) (i = 1) in the ball B, and vice versa, we ShaH say that
equations (1), (2) (¢ = 1) and (1), (2) (¢ = 2) are Ly,-equivalent in the ball B,.

The paper aims at finding sufficiently conditions for the existence of L,-

equivalence between the impulse equations (1),(2) (i = 1,2).

3. Main results
3.1. Ly-equivalent impulse equations

Let us set
v(t) = ug(t) —u(t),
u;(t) (i = 1,2) being defined by (8).
Then the function v(t) is a solution of the integral equation

o(t) = T(u1,0)(1),

where
Ty, 0)(t) = Va(t,0)(us (0) + v(0)) — Vi (£, 0)ur (0)

0 o+ Of{wn)fg(r, wn(7) + 0(7)) — Va(t.7) fa (o (7)) Y+
TS A I (6) + 0(6) — Vit A (1 (6,)
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We shall prove that for each solution wq(t) of equation (1),(2) (i = 1)
lying in the ball B, the operator T'(uj,v) has a fixed point v(¢) such that
u1(t) + v(t) € By4, for some p > 0 and which is in L,(X).

Let S(Ry, X) be linear set of all functions which are continuous for t#t,
(n=1,2,...), have both left and right limits at points ¢,, and are left continuous.
The set S(R, X) is a locally convex space w.r.t. the metric

max_|[u(t) — o(t)]|

plu,v) = sup (1+ T)_1 1 _OftST THG! Gl
0<T <00 orgtang U v

The convergence with respect to this metric coincides with the uniform con-
vergence on each bounded interval. For this space an analog of Arzella-Ascoli’s
theorem is valid.

Lemma 1. [1] The set M C S(Ry, X)is relatively compact if and only if
the intersections M(t) = {m(t) : m € M} are relatively compact for t € R
and M is equicontinuous on each interval (t,,t,+1] (n =0,1,2,...).

Proof. We apply Arzella-Ascoli theorem to each interval (t,,t,41]
(n = 0,1,2,...) and constitute a diagonal line sequence, which is converging
on each of them. O

Lemma 2. [1] Let the continuous compact operator T transform the set
Clp) = {v € S(R., X) : v(t) € By, t Ry}

onto itself.
Then T has a fixed point in C(p).

3.2. Conditions for L,-equivalence

Theorem 1. Let the following conditions be fulfilled.
1. There exist positive functions K;(t,s) (i = 1,2) such that

IVi(t, )¢l < Ki(t, s)[€]l (0 < s <2, £ € D(Ai(s))),

where the functions K;(t,0) (¢ = 1,2) satisfy the following condition.
There exist constants r, p > 0 such that

K1, 0)[IEll + B (@, 0)[Inll < xrp(t)  (E € Ry, 0 € Bryy, €€ By,

where x;.,(t) € Ly(R4).
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2. The functions f;(t,u) and K;(t,s) (i = 1,2) satisfy the conditions.

t t
2.1 sup [Ky(t, )l fi(7,u)|dr+ sup [ EKs(t, 7l fa(7, w)lldT < 4y, (1),
lull<r 0 lwl|<r+p0

where v, ,(t) is continuous and ¥, ,(t) € L,(R,).

2.2 j‘é(t,T)fg(T,ul(T) +o(r))dr € K(t)

(v € B,, u1 € By, uy — fixed), where for any fixed t € Ry K(t) is a compact
subset of X.

3. The functions hi (u) and K;(t,s) (i = 1,2) satisfy the conditions.

3.1 sup >3 Ki(t.t7)[hp(w)ll + sup 3T Ka(t )[R (w)]| <
ul|<r 0<t,<t w||<r+p 0<t, <t

< @rp(t), where @, ,(t) € L,(R,).

3.2 > Va(t, D)2 (ui(ty) +v(tn)) € Kn,
0<t,<t
(v € By, u1 € By, uy — fixed), where for any fixedn = 1,2, ... K,, is a compact

subsets of X.

4. The function fy(t,w) satisfies the condition

sup I (t, )| foT, w) || < Do p(t, 7),
lwll<r+p

t
where [ ®, ,(t,7)dT < oo for any fixed t € Ry.
0

5. The inequality

Xrp(8) +Prp(t) + @rp(t) < p

holds for each t € R,.

Then the equation (1), (2) for i = 2 is Ly-equivalent to the equation (1), (2)
for i =1 in the ball B,..
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Proof. We shall show that for any function u,(¢t) € B, (¢ € Ry) the

operator T'(u1,v) defined by equality (9) maps the set
Cp) = {v € SR}, X) : o(t) € By, t € R, }

into itself.

Let uy(t) € By (t € Ry) and let v € C(p). Then, making use of (9) we

obtain the estimate

1T (ur, 0) (O] < [[Va(t,0) (ur (0) + v(0)[| + [[Va (£, 0)ur (0) |+

+0f IValt, ) folrua () + o(r) dr + f Vit ) f1 (s () [+
S DR ) o)+ (e ()] <

0<t,<t

< K (t,0)[[ua (0) + v(0)]| + K1(2, 0)[[ur (0) ]|+

¢ ¢
+ sup [ Ka(t,7)||fo(r,w)||dT + sup [ Kq(t,7)||fi(T,w)||dr+
[lw]|<r+p 0 [lul[<r 0

+ sup 3 Kot th)hL(w)l+ sup 3T Ki(t )|y (uw)]| <

|lw||<r4+p0<t, <t ul|[<r0<t,<t
S Xr,p(t) + qur,p(t) + (pT,[)(t) S ,0

for each t € R;.
Let M = {m(t) = T'(u1,v)(t) : ||v]| < p, t € R4}

We shall show the equicontinuity of the functions of the set M. Let t’ > ¢

and t',t" € (tn, tn41]. It is easilyseen that.

[m(t") —m(t")[| <
< ||Va(t',0)ua(0) — Va(t”,0)uz (0)|| + [[Vi(t',0)u1 (0) — Vi(t”,0)us (0)+

t/I

+ sup [ [Va(t',7) fa(r,w) = Va(t", 7) fo7, w) | dT+
H’UHSTJr///? 0
+ sup f ||V1(t/77-)f1(7—7 u) - Vl(t//77—)fl(7—7 u)||d7—+

lull<r 0
’ ’

t t
+ sup [ K1) fa(mw)lldr + sup [ Ky (t,7)| f1(7w)ldT+

lwl| <r4-py lul| <y

+ sup 3 Ve 55)R3 (w) = Va(t", £5)hi (w)]|+
lwll<r+po<t, <t

+sup 30 VAt 60 hy (w) = Vit 6y (w)]].

lull<ro<t, <t/
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The continuity of functions V;(¢,7) (¢ = 1,2) on (tn,ts+1] and condition 2.1 of
Theorem 1 imply the equicontinuity of the set M.

It follows from conditions 2.2, 3.2 and (9) that the sections M (t) = {m(t) :
m € M} are compact for any t € R;. Consequently, Lemma 1 implies the
compactness of the set M.

Now, we shall show that the operator T'(uq,v) is continuous in S(Ry, X).

Let the sequence {vi(t)} C C(p) be convergent in the metric of the
space S(R4,X) to the function v(t) € C(p). Then, for t € Ry the se-
quence fo(t,u1(t) + vi(t)) converges to fa(t,ui(t) + v(t)). Utilizing condi-
tion 4 of Theorem 1, we obtaint that the convergent sequence of functions
Vo(t, 7) fo(7,u1(T) + vi(7)) is majorized by the integrable function ®, ,(¢,7).
Therefore, we may pass to the limit in the formula.

T(uy,v)(t) = Va(t,0)(ur(0) + vg(0)) — Vi (¢,0)uq (0)+

+ Oft{Vg(t, ) fa(ryur () + vk (7)) = Va(t, 7) f1 (7, ur (7)) pdr+
+ > {(Vat t)ha (ur(tn) + vk(tn)) = Vit 65)hy (ur ()}

0<t, <t
Hence, T'(uy, vg)(t) tends to T(uy,v)(t) for ¢t € R,.
From Lemma 2 it follows that for any u; € B, the operator T'(uj,v) has

a fixed point v in C'(p) i.e., v =T (ug,v).
We shall show that this fixed point v(¢) lies in L,(X).

[o(®) < Ka(t,0)[[ur(0) + v(0)[| + K1 (2, 0)[[ur (0) ]+

t t
+ sup [ K(t,7)|fa(r,w)lldr + sup [ Ki(t, 7)|lfa(r, w)lldr+
lwll<r+p 0 Jull<r 0

+ sup 3 Kot th) AL (w)l+ sup 3T Ki(t )|y (uw)]| <

[[w||<r+p 0<t, <t Ju||<r0<t,<t
< Xr,p(t) + wr,p(t) + ‘Pr,p(t)

1
[wll, < (f Ixrp(t) + 4rp(8) + @rp(D)7dt) - <
0
< Abxrplly, + 19roll, + ller,ll,,
Hence, this fixed point belongs to the space S(R, X) i.e., equation (1), (2)
for ¢ = 2 is L,-equivalent to the equation (1), (2) for ¢ = 1 in the ball B,.
Theorem 1 is proved. g
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We shall illustrate Theorem 1 with an example of the qualitative theory
of the nonlinear partial impulse differential equations.

Example. In the example we consider two partial impulse differential
equations and reduce them to two ordinary impulse differential equtions. For
these ordinary impulse differential equations, the conditions of Theorem 1 are
fulfilled. Many notations and results for ordinary differential equations are
taken from capitals 5 — 7 of [4]. The short introduction in the general theory
of nonlinear partial impulse differential equations follows [2].

Let © be a bounded domain with smooth boundary 99 in R"”,
Q= (0,00) x Q and T = (0, 00) x 9.

We denote

P,={(tn,z): z€Q}, P= U P,

n=1

A ={(tn,2): 2 €09}, A= ] An.
n=1

Consider the impulse nonlinear parabolic initial value problems

(10) St = it D+ Filt ), (4,7) €Q\ P
(11) D%u;(t,z) =0, |aj <m, (t,z) €T\ A
(12) u;(0,z) = vi(x), =€

(13)  wi(th,x) = Q (uiltn, ) + Al (uitn, x)), 2€Q, n=1,2, ..,

where R '
A;(t,z,D) = Z al (t,z) D,

lal<2m

Qﬁl . D(Q!) — D(Ay(tn,z,D)) (n = 1,2,..;i = 1,2) are linear operators,
fi(,, ) Ry x R" x R — R and A, : R — R are continuous functions.
Let X = L,(1,R) (1 <p < 00), where

Ly(QR) = {v: Q —R; /|v(w)|pdx < 50}
Q
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with norm |v|, = f [v(z |pdm

With the famlly Al(t, xz, D), t € Ry, (i =1,2) of strongly elliptic operators
we associate a family of linear operators A;(t), t € Ry, (n=1,2) acting in X
by
Ai(t)ui = /L(t,x, D)ui, for u; € D.
This is done as follows D = D(A4;(t)) = W2mP(Q)NW"P(Q), (i=1,2;
teRy).
Let v; € X. We set

filt,us)(x) = filt,z,ui(t, x), ui € X, teRy, z€Q(i=1,2),
Qi (ui(tn)) (@) = @ (wiltn, @), hi,(wi(tn)) (@) = by, (witn, 2)),
where Q% : D(Q!) — D (D(Q%) C X lie dense in X (i = 1,2)) are linear
operators, fi : R, x X — X and h?, : X — X are continuous functions.
We shall prove the Lp-equivalence between the equations (1),(2)
(i=1,2).
Let U;(t, s) (i = 1,2) are the Cauchy operators of the equations
dui
dt

Sufficient conditions for the validity of the estimates

\Ui(t, s)l,—., < Cie™ (t=5) (0<s<t; Csk; >0 constants, i = 1,2)

are given in [4].
We shall consider the concrete case when t, =n (n=1,2,...),

i t,r,uy) = e'“tM, fo t,z,up) = et sinusg(t, ),
w

1+u (¢,
QLé = W£17 Q26 = sza
AL (uy (b, z)) = €21 27w (tn®) B2 (yy(t, 1)) = e ——t

1+u§(tn7x)
where —1 < v; + k; < 0 and «; + k; <1n% (i=1,2).
Then
fi(t,ug) = et ”1( Ly fa(t, ug) = €72t sinug(t),

le _ , 20 _ k
Qré = W;mgla Q26 = Griindyecarz §2)

hyy(un () = €727 00) 12 (un(tn)) = €™ gt
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Let Vi(t,s) (i = 1,2; 0 < s < t) are the Cauchy operators of the linear

impulse equations

dui _ A;i(t)u; fort £t

dt - 3 (] n
ui(th) = Qb (ui(tn)) forn=1,2,...

Then for 0 < s <k <n <t, £ €D the following estimates are valid
[Vi(t, s)€l, = [UL(t, tn) @y QUL (tr, 8)E], <

—k1(t—n) kin ik —k1(k—s)
S Cle C1(1+n2)ecl+k’1 “'Cl(l+k2)ecl+k1 Cle ‘£|p S

kp—k — —5 — —5
S ecl(ncilk?#*l) ekl(i*kﬁ»l) klne kl(t )‘€|p S klte kl(t )|£|p'

Similarly

Va(t, $)E|, < kote P27
We set

kit,s) = kite M=) (1 =1,2)
Let » > 0 and

1

(14) p > (r+2(p(S2))7)

e—1
We shall show that the conditions of Theorem 1 are fulfilled.
For any £ € B, n € B,1,, t € Ry we obtain
Ki(t,0)[€], + Ka(t,0)|n], = kite™ €| + kate™*2tp| <
< kyte Rty 4 kote=R2t (r + p).
Let us set
Xrp(t) = kate ™0 4 kote "2t (r + p).
We shall show that condition 2.1 of Theorem 1 is fulfilled.
t t
sup [ K1(t,7)|fi(r,u)l,dr + sup [ Ka(t,7)|fo(r,w)|,dT =

Jul,<r 0 jwl, <r+p0

t 2

— —T 7|_u (1)

= sup [kite MtDenT| ST drt
\u|pSr0f ' |1+ i )|p

t
+ sup fkgte*kz(t*ﬂewﬂsinw(T)|pdT§
|w],<r+p0

34



Ly-Equivalence Between Two Nonlinear Impulse Differential Equations . ..

t
< kyte Rt (p(Q))7 [ elnt1)rdry

0

¢
+k2te_k2t(,u(§2))% [ etkz42)mqr <

0

i 1
Let us set
1 1
()7 ()7
r t) = kqte kltL _|_k te thi.
prolt) = Rt oy TR )

We shall prove condition 3.1 of Theorem 1.

sup 30 Ka(tth)[hy(u(te))l, + sup 30 Ka(t t))|h: (w(ts))], =
[ul,<r0<n<t |wl], <r+p 0<n<t

= sup Z klte—lm(t—n)ea1n|2—u(tn)|p+

|ul,<r0<n<t
+osup 3 ket R(mmeonn| | <
lw], <r+p0<n<t nr

< kate M (u(@)7 T elhrenny
0<n<t

Fhate Rt (u(Q))7 3 elhatann <

0<n<t
_ 1 aq+k _ 1 ag+k
< kte™ M ()Y e + kate R (W(Q))?

Set
ec1tk1 2tk

1 _
rp(t) = kite™ M (u(Q2))? T oarthn T hate "2 () T emniha”

=

It is not hard to check if the functions x. ,(t), ¥r ,(t) and ¢, ,(¢) lie in the

space L, (R4 ).
Condition 4 of Theorem 1 is fulfilled with

;. (1,7) = kate " ()7 2T € Ly(R,)

for any fixed t € R.
We shall show that condition 5 of Theorem 1 holds

Xr,p(t) + wr,p(t) + ‘Pr,p(t) =
= kyte ™M (r — (W) i + ()7 15 )+

1 ag+ky
)

1 1
Hhate ™ 2 (r 4 p = ((Q)? 1= + ()P g )-
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From condition (14) we obtain
Xr,p(t) + U p(t) + @r p(t) < p for each t € Ry,

By means of a compactness criterion from [3] we shall prove condition 2.2.

Set
t

/VQ(t,T)Ja(T, wr(7) +v(r))dr : o], < p}

0

=
Py
SN~—
I
~
3
-
N—
I

is a compact subset of X for any fixed t.
Indeed,

m(t)(2)] < hate 2" f (k9207 | sin(u(7) (2) + w1 (7) (2)) dr <

t
S f@(k2+72)7d7— = in'YZ (€(k2+’y2)t — ]_), le

0
(f [m(t)(x)[Pde) 7 < g (e®2 Dt — 1) ()7

and hence |m(t)(z)[, < N (N-constant).
We show that
im(t)(z + h) —m(t)(z)|, = 0 (h—0).
This follows from the relations below
Im(t)(z + h) —m(t)(2)] <

< [e®2472)7 sin(v(1)(x + h) + up (7)(z + h)) — sin(v(7)(z) + uy (7)(z))|dr <

o O o

< [ et jo(r) (@ + h) — v(7) (@) |dr + Ofte<k2+w>f|u<7><x + ) - u(r)(@)|dr

In a similar way, we show the validily of condition 3.2.
The conditions of Theorem 1 are fulfilled and hence the ordinary equations

(1),(2) (i = 1,2) are in B, Ly-equivalent. Hence, every solution u;(t,z) of
(10) — (13) (¢ = 1) induces a solution ua(t, x) of (10) — (13) (¢ = 2) such that
the function oy (t) = |u1 (¢, x) — uz(t, x)| lies in L,(Ry) for any z € Q .
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L,-EKBUBAJIEHTHOCT ME2K/1Y /JIBE HEJIMHETHI
MMITYJICHU JIMOEPEHIINMAJIHV YPABHEHUA C
HEOT'PAHUYEHU JINTHENHU YACTU N TAXHOTO

IMTPNJIO2KEHUWE 3A YACTHU NMMIIYJICHU
ANPOEPEHIINAJIHN YPABHEHN A

Aranacka ['eopruesa, Crenan Kocraauunos

Pesiome. C momorrra va Teopemara Ha [[laynep—TuxoHOB 3a HEMOIBIK-
HaTa TOUKA € JOKa3aHa L,-eKBUBAJCHTHOCT MEXKTy JBe NMITYJICHH TibepeHIr-
aJIHM yPaBHEHMs C HeOrpaHUIeHN JuHeiiHu yacTu. Jla1eH e npuMep OT TeOpUsITa
Ha 9YaCTHUTE I/II\/IHy.HCHI/I JII/I(i)epeHILI/IaJIHI/I ypaBHeHI/IH oT Ha.pa6OJII/I“IeH THUII.
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