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1. Introduction

We study an equivalence in Lp (1 ≤ p < ∞) between two ordinary impulse
differential equations with a possibly unbounded linear part. This means that
to every bounded solution of the first equation there corresponds a bounded
solution to the second equation such that their difference is in Lp and vice
versa. In Theorem 1 we prove the Lp-equivalence making use of the Schauder-
Tychonoff’s fixed point principle. Further we give an example with an im-
portant application in physics. We consider two partial impulse differential
equations with elliptic linear parts and reduce them to two ordinary impulse
differential equations. These equations satisfy the conditions of Theorem 1
and are therefore Lp-equivalent. In this case, we establish ”Lp-dependence”
between the solutions of two partial equations.
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2. Statement of the problem

Let X be a Banach space with norm ‖.‖ and identity I.
By D(T ) ⊂ X we will denote the domain of the operator T : D(T ) → X.
We consider the following two impulse differential equations

(1)
dui

dt
= Ai(t)ui + fi(t, ui) for t 6= tn

(2) ui(t+n ) = Qi
n(ui(tn)) + hi

n(ui(tn)) for n = 1, 2, ...,

where Ai(t) : D(Ai(t)) → X (t ∈ R+) and Qi
n : D(Qi

n) → D(Ai(tn)) (i = 1, 2)
are linear (possibly unbounded) operators. The sets D(Ai(t)) and D(Qi

n) (i =
1, 2; t ≥ 0, n = 1, 2, ...) are dense in X. The functions fi(., .) : R+ ×X → X
and hi

n : X → X(n = 1, 2, ...) are continuous. The points of jump tn satisfy
the following conditions 0 = to < t1 < ... < tn < ..., lim

n→∞
tn = ∞. We set

Qi
0 = I, hi

0(u) = 0 (i = 1, 2, u ∈ X).
Furthermore, we assume that all considered functions are left continuous.
Let Ui(t, s) (i = 1, 2; 0 ≤ s ≤ t) be Cauchy operators of the linear ordinary

equations

(3)
dui

dt
= Ai(t)ui (i = 1, 2).

It is easy to prove that the functions ui(t) = Vi(t, s)ξi

for ξi ∈ D(Ai(s)) (i = 1, 2) with

(4) Vi(t, s) = Ui(t, tn)Qi
nUi(tn, tn−1)Qi

n−1...Q
i
kUi(tk, s)

(0 ≤ s ≤ tk ≤ tn < t) satisfy the linear impulse Cauchy problems

(5)
dui

dt
= Ai(t)ui for t 6= tn

(6) ui(t+n ) = Qi
n(ui(tn)) for n = 1, 2, ...

(7) ui(s) = ξi (i = 1, 2).

Let us note that the operators Vi(t, s) (i = 1, 2) are bounded if one of the
following conditions holds.

1. Qi
nUi(tn, tn−1) are bounded operators (i = 1, 2; n = 1, 2, ...).

2. Ui(tn+1, tn)Qi
n are bounded operators (i = 1, 2; n = 1, 2, ...).
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Definition 1. The solutions of integral equations

(8) ui(t) = Vi(t, s)ξi +

t∫

s

Vi(t, τ)fi(τ, ui(τ))dτ +
∑

s<tn<t

Vi(t, t+n )hi
n(ui(tn))

for 0 ≤ s ≤ t, ξi ∈ D(Ai(s)), ui(s) = ξi are called solutions of the impulse
equations (1), (2) (i = 1, 2).

By Lp(X), 1 ≤ p < ∞ we denote the space of all functions u : R+ → X for

which
∞∫
0

‖u(t)‖p
dt < ∞ with norm ‖u‖p = (

∞∫
0

‖u(t)‖p
dt)

1
p

. Set

Br = {u ∈ X : ‖u‖ ≤ r}.
Definition 2. The equation (1), (2) for i = 2 is called Lp-equivalent to

the equation (1), (2) for i = 1 in the ball Br, if there exists ρ > 0 such that
for any solution u1(t) of (1), (2) (i = 1) lying in the ball Br there exists a
solution u2(t) of (1), (2) (i = 2) lying in the ball Br+ρ and satisfying the
relation u2(t) − u1(t) ∈ Lp(X). If equation (1), (2) (i = 2) is Lp-equivalent
to equation (1), (2) (i = 1) in the ball Br and vice versa, we shall say that
equations (1), (2) (i = 1) and (1), (2) (i = 2) are Lp-equivalent in the ball Br.

The paper aims at finding sufficiently conditions for the existence of Lp-
equivalence between the impulse equations (1), (2) (i = 1, 2).

3. Main results

3.1. Lp-equivalent impulse equations

Let us set
v(t) = u2(t)− u1(t),

ui(t) (i = 1, 2) being defined by (8).
Then the function v(t) is a solution of the integral equation

v(t) = T (u1, v)(t),

where

(9)

T (u1, v)(t) = V2(t, 0)(u1(0) + v(0))− V1(t, 0)u1(0)+

+
t∫
0

{V2(t, τ)f2(τ, u1(τ) + v(τ))− V1(t, τ)f1(τ, u1(τ))}dτ+

+
∑

0<tn<t
{V2(t, t+n )h2

n(u1(tn) + v(tn))− V1(t, t+n )h1
n(u1(tn))}
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We shall prove that for each solution u1(t) of equation (1), (2) (i = 1)
lying in the ball Br the operator T (u1, v) has a fixed point v(t) such that
u1(t) + v(t) ∈ Br+ρ for some ρ > 0 and which is in Lp(X).

Let S(R+, X) be linear set of all functions which are continuous for t 6=tn
(n=1, 2, ...), have both left and right limits at points tn and are left continuous.
The set S(R+, X) is a locally convex space w.r.t. the metric

ρ(u, v) = sup
0<T<∞

(1 + T )−1
max

0≤t≤T
‖u(t)− v(t)‖

1 + max
0≤t≤T

‖u(t)− v(t)‖ .

The convergence with respect to this metric coincides with the uniform con-
vergence on each bounded interval. For this space an analog of Arzella-Ascoli’s
theorem is valid.

Lemma 1. [1] The set M ⊂ S(R+, X)is relatively compact if and only if
the intersections M(t) = {m(t) : m ∈ M} are relatively compact for t ∈ R+

and M is equicontinuous on each interval (tn, tn+1] (n = 0, 1, 2, ...).

Proof. We apply Arzella-Ascoli theorem to each interval (tn, tn+1]
(n = 0, 1, 2, ...) and constitute a diagonal line sequence, which is converging
on each of them. ¤

Lemma 2. [1] Let the continuous compact operator T transform the set

C(ρ) = {v ∈ S(R+, X) : v(t) ∈ Bρ, t ∈ R+}
onto itself.

Then T has a fixed point in C(ρ).

3.2. Conditions for Lp-equivalence

Theorem 1. Let the following conditions be fulfilled.
1. There exist positive functions Ki(t, s) (i = 1, 2) such that

‖Vi(t, s)ξ‖ ≤ Ki(t, s)‖ξ‖ (0 ≤ s ≤ t, ξ ∈ D(Ai(s))),

where the functions Ki(t, 0) (i = 1, 2) satisfy the following condition.
There exist constants r, ρ > 0 such that

K1(t, 0)‖ξ‖+ K2(t, 0)‖η‖ ≤ χr,ρ(t) (t ∈ R+, η ∈ Br+ρ, ξ ∈ Br),

where χr,ρ(t) ∈ Lp(R+).

28



Lp-Equivalence Between Two Nonlinear Impulse Differential Equations . . .

2. The functions fi(t, u) and Ki(t, s) (i = 1, 2) satisfy the conditions.

2.1 sup
‖u‖≤r

t∫
0

K1(t, τ)‖f1(τ, u)‖dτ+ sup
‖w‖≤r+ρ

t∫
0

K2(t, τ)‖f2(τ, w)‖dτ ≤ ψr,ρ(t),

where ψr,ρ(t) is continuous and ψr,ρ(t) ∈ Lp(R+).

2.2
t∫
0

V2(t, τ)f2(τ, u1(τ) + v(τ))dτ ∈ K(t)

(v ∈ Bρ, u1 ∈ Br, u1 − fixed), where for any fixed t ∈ R+ K(t) is a compact
subset of X.

3. The functions hi
n(u) and Ki(t, s) (i = 1, 2) satisfy the conditions.

3.1 sup
‖u‖≤r

∑
0<tn<t

K1(t, t+n )‖h1
n(u)‖ + sup

‖w‖≤r+ρ

∑
0<tn<t

K2(t, t+n )‖h2
n(w)‖ ≤

≤ ϕr,ρ(t), where ϕr,ρ(t) ∈ Lp(R+).

3.2
∑

0<tn<t
V2(t, t+n )h2

n(u1(tn) + v(tn)) ∈ Kn

(v ∈ Bρ, u1 ∈ Br, u1−fixed), where for any fixed n = 1, 2, ... Kn is a compact
subsets of X.

4. The function f2(t, w) satisfies the condition

sup
‖w‖≤r+ρ

K2(t, τ)‖f2(τ, w)‖ ≤ Φr,ρ(t, τ),

where
t∫
0

Φr,ρ(t, τ)dτ < ∞ for any fixed t ∈ R+.

5. The inequality

χr,ρ(t) + ψr,ρ(t) + ϕr,ρ(t) ≤ ρ

holds for each t ∈ R+.

Then the equation (1), (2) for i = 2 is Lp-equivalent to the equation (1), (2)
for i = 1 in the ball Br.
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Proof. We shall show that for any function u1(t) ∈ Br (t ∈ R+) the
operator T (u1, v) defined by equality (9) maps the set

C(ρ) = {v ∈ S(R+, X) : v(t) ∈ Bρ, t ∈ R+}
into itself.

Let u1(t) ∈ Br (t ∈ R+) and let v ∈ C(ρ). Then, making use of (9) we
obtain the estimate

‖T (u1, v)(t)‖ ≤ ‖V2(t, 0)(u1(0) + v(0))‖+ ‖V1(t, 0)u1(0)‖+

+
t∫
0

‖V2(t, τ)f2(τ, u1(τ) + v(τ))‖dτ +
t∫
0

‖V1(t, τ)f1(τ, u1(τ))‖dτ+

+
∑

0<tn<t
‖V2(t, t+n )h2

n(u1(tn) + v(tn))‖+
∑

0<tn<t
‖V1(t, t+n )h1

n(u1(tn))‖ ≤

≤ K2(t, 0)‖u1(0) + v(0)‖+ K1(t, 0)‖u1(0)‖+

+ sup
‖w‖≤r+ρ

t∫
0

K2(t, τ)‖f2(τ, w)‖dτ + sup
‖u‖≤r

t∫
0

K1(t, τ)‖f1(τ, u)‖dτ+

+ sup
‖w‖≤r+ρ

∑
0<tn<t

K2(t, t+n )‖h2
n(w)‖+ sup

‖u‖≤r

∑
0<tn<t

K1(t, t+n )‖h1
n(u)‖ ≤

≤ χr,ρ(t) + ψr,ρ(t) + ϕr,ρ(t) ≤ ρ

for each t ∈ R+.
Let M = {m(t) = T (u1, v)(t) : ‖v‖ ≤ ρ, t ∈ R+}.
We shall show the equicontinuity of the functions of the set M . Let t′ > t′′

and t′, t′′ ∈ (tn, tn+1]. It is easilyseen that.

‖m(t′)−m(t′′)‖ ≤
≤ ‖V2(t′, 0)u2(0)− V2(t′′, 0)u2(0)‖+ ‖V1(t′, 0)u1(0)− V1(t′′, 0)u1(0)‖+

+ sup
‖w‖≤r+ρ

t′′∫
0

‖V2(t′, τ)f2(τ, w)− V2(t′′, τ)f2(τ, w)‖dτ+

+ sup
‖u‖≤r

t′′∫
0

‖V1(t′, τ)f1(τ, u)− V1(t′′, τ)f1(τ, u)‖dτ+

+ sup
‖w‖≤r+ρ

t′∫
t′′

K2(t′, τ)‖f2(τ, w)‖dτ + sup
‖u‖≤r

t′∫
t′′

K1(t′, τ)‖f1(τ, u)‖dτ+

+ sup
‖w‖≤r+ρ

∑
0<tn<t′′

‖V2(t′, t+n )h2
n(w)− V2(t′′, t+n )h2

n(w)‖+

+ sup
‖u‖≤r

∑
0<tn<t′′

‖V1(t′, t+n )h1
n(u)− V1(t′′, t+n )h1

n(u)‖.
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The continuity of functions Vi(t, τ) (i = 1, 2) on (tn, tn+1] and condition 2.1 of
Theorem 1 imply the equicontinuity of the set M .

It follows from conditions 2.2, 3.2 and (9) that the sections M(t) = {m(t) :
m ∈ M} are compact for any t ∈ R+. Consequently, Lemma 1 implies the
compactness of the set M .

Now, we shall show that the operator T (u1, v) is continuous in S(R+, X).
Let the sequence {vk(t)} ⊂ C(ρ) be convergent in the metric of the

space S(R+, X) to the function v(t) ∈ C(ρ). Then, for t ∈ R+ the se-
quence f2(t, u1(t) + vk(t)) converges to f2(t, u1(t) + v(t)). Utilizing condi-
tion 4 of Theorem 1, we obtaint that the convergent sequence of functions
V2(t, τ)f2(τ, u1(τ) + vk(τ)) is majorized by the integrable function Φr,ρ(t, τ).
Therefore, we may pass to the limit in the formula.

T (u1, vk)(t) = V2(t, 0)(u1(0) + vk(0))− V1(t, 0)u1(0)+

+
t∫
0

{V2(t, τ)f2(τ, u1(τ) + vk(τ))− V1(t, τ)f1(τ, u1(τ))}dτ+

+
∑

0<tn<t
{V2(t, t+n )h2

n(u1(tn) + vk(tn))− V1(t, t+n )h1
n(u1(tn))}

Hence, T (u1, vk)(t) tends to T (u1, v)(t) for t ∈ R+.
From Lemma 2 it follows that for any u1 ∈ Br the operator T (u1, v) has

a fixed point v in C(ρ) i.e., v = T (u1, v).
We shall show that this fixed point v(t) lies in Lp(X).

‖v(t)‖ ≤ K2(t, 0)‖u1(0) + v(0)‖+ K1(t, 0)‖u1(0)‖+

+ sup
‖w‖≤r+ρ

t∫
0

K2(t, τ)‖f2(τ, w)‖dτ + sup
‖u‖≤r

t∫
0

K1(t, τ)‖f1(τ, u)‖dτ+

+ sup
‖w‖≤r+ρ

∑
0<tn<t

K2(t, t+n )‖h2
n(w)‖+ sup

‖u‖≤r

∑
0<tn<t

K1(t, t+n )‖h1
n(u)‖ ≤

≤ χr,ρ(t) + ψr,ρ(t) + ϕr,ρ(t)

‖v‖p ≤ (
∞∫
0

|χr,ρ(t) + ψr,ρ(t) + ϕr,ρ(t)|pdt)
1
p

≤
≤ ‖χr,ρ‖p + ‖ψr,ρ‖p + ‖ϕr,ρ‖p

Hence, this fixed point belongs to the space S(R+, X) i.e., equation (1), (2)
for i = 2 is Lp-equivalent to the equation (1), (2) for i = 1 in the ball Br.

Theorem 1 is proved. ¤
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We shall illustrate Theorem 1 with an example of the qualitative theory
of the nonlinear partial impulse differential equations.

Example. In the example we consider two partial impulse differential
equations and reduce them to two ordinary impulse differential equtions. For
these ordinary impulse differential equations, the conditions of Theorem 1 are
fulfilled. Many notations and results for ordinary differential equations are
taken from capitals 5 − 7 of [4]. The short introduction in the general theory
of nonlinear partial impulse differential equations follows [2].

Let Ω be a bounded domain with smooth boundary ∂Ω in Rn,
Q = (0,∞)× Ω and Γ = (0,∞)× ∂Ω.

We denote

Pn = {(tn, x) : x ∈ Ω}, P =
∞⋃

n=1

Pn,

Λn = {(tn, x) : x ∈ ∂Ω}, Λ =
∞⋃

n=1

Λn.

Consider the impulse nonlinear parabolic initial value problems

(10)
∂ui

∂t
= Ãi(t, x, D)ui + f̃i(t, x, ui), (t, x) ∈ Q \ P

(11) Dαui(t, x) = 0, |α| < m, (t, x) ∈ Γ \ Λ

(12) ui(0, x) = vi(x), x ∈ Ω

(13) ui(t+n , x) = Q̃i
n(ui(tn, x)) + h̃i

n(ui(tn, x)), x ∈ Ω, n = 1, 2, ...,

where
Ãi(t, x,D) =

∑

|α|≤2m

ai
α(t, x)Dα,

Q̃i
n : D(Q̃i

n) → D(Ãi(tn, x, D)) (n = 1, 2, ...; i = 1, 2) are linear operators,
f̃i(., ., .) : R+ × Rn × R→ R and h̃i

n : R→ R are continuous functions.
Let X = Lp(Ω,R) (1 < p < ∞), where

Lp(Ω,R) = {v : Ω → R;
∫

Ω

|v(x)|pdx < ∞}
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with norm |v|p = (
∫
Ω

|v(x)|pdx)
1
p .

With the family Ãi(t, x, D), t ∈ R+, (i = 1, 2) of strongly elliptic operators
we associate a family of linear operators Ai(t), t ∈ R+, (n = 1, 2) acting in X
by

Ai(t)ui = Ãi(t, x, D)ui, for ui ∈ D.

This is done as follows D = D(Ai(t)) = W 2m,p(Ω)
⋂

Wm,p
0 (Ω), (i=1, 2;

t ∈ R+).
Let vi ∈ X. We set

fi(t, ui)(x) = f̃i(t, x, ui(t, x)), ui ∈ X, t ∈ R+, x ∈ Ω (i = 1, 2),

Qi
n(ui(tn))(x) = Q̃i

n(ui(tn, x)), hi
n(ui(tn))(x) = h̃i

n(ui(tn, x)),

where Qi
n : D(Qi

n) → D (D(Qi
n) ⊂ X lie dense in X (i = 1, 2)) are linear

operators, f i
n : R+ ×X → X and hi

n : X → X are continuous functions.
We shall prove the Lp-equivalence between the equations (1), (2)

(i = 1, 2).
Let Ui(t, s) (i = 1, 2) are the Cauchy operators of the equations

dui

dt
= Ai(t)ui

Sufficient conditions for the validity of the estimates

|Ui(t, s)|p→p ≤ Cie
−ki(t−s) (0 ≤ s ≤ t; Ci, ki > 0 constants, i = 1, 2)

are given in [4].
We shall consider the concrete case when tn = n (n = 1, 2, ...),

f̃1(t, x, u1) = eγ1t u2
1(t,x)

1+u2
1(t,x)

, f̃2(t, x, u2) = eγ2t sin u2(t, x),

Q̃1
nξ1 = k1n

C1(1+n2)eC1+k1
ξ1, Q̃2

nξ2 = k2n
C2(1+n2)eC2+k2

ξ2,

h̃1
n(u1(tn, x)) = eα1n.2−u1(tn,x), h̃2

n(u2(tn, x)) = eα2n 1
1+u2

2(tn,x)

where −1 < γi + ki < 0 and αi + ki < ln 1
2 (i = 1, 2).

Then
f1(t, u1) = eγ1t u2

1(t)

1+u2
1(t)

, f2(t, u2) = eγ2t sin u2(t),

Q1
nξ1 = k1n

C1(1+n2)eC1+k1
ξ1, Q̃2

nξ2 = k2n
C2(1+n2)eC2+k2

ξ2,

h1
n(u1(tn)) = eα1n.2−u1(tn), h2

n(u2(tn)) = eα2n 1
1+u2

2(tn)
.
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Let Vi(t, s) (i = 1, 2; 0 ≤ s ≤ t) are the Cauchy operators of the linear
impulse equations

dui

dt
= Ai(t)ui for t 6= tn

ui(t+n ) = Qi
n(ui(tn)) for n = 1, 2, ...

Then for 0 < s ≤ k < n < t, ξ ∈ D the following estimates are valid

|V1(t, s)ξ|p = |U1(t, tn)Q1
n...Q1

kU1(tk, s)ξ|p ≤

≤ C1e
−k1(t−n) k1n

C1(1+n2)eC1+k1
... k1k

C1(1+k2)eC1+k1
C1e

−k1(k−s)|ξ|p ≤

≤ C1

eC1(n−k+1)
kn−k
1

ek1(n−k+1) k1ne−k1(t−s)|ξ|p ≤ k1te
−k1(t−s)|ξ|p.

Similarly
|V2(t, s)ξ|p ≤ k2te

−k2(t−s)|ξ|p.
We set

ki(t, s) = kite
−ki(t−s) (i = 1, 2)

Let r > 0 and

(14) ρ >
2

e− 1
(r + 2(µ(Ω))

1
p )

We shall show that the conditions of Theorem 1 are fulfilled.
For any ξ ∈ Br, η ∈ Br+ρ, t ∈ R+ we obtain

K1(t, 0)|ξ|p + K2(t, 0)|η|p = k1te
−k1t|ξ|p + k2te

−k2t|η|p ≤
≤ k1te

−k1tr + k2te
−k2t(r + ρ).

Let us set
χr,ρ(t) = k1te

−k1tr + k2te
−k2t(r + ρ).

We shall show that condition 2.1 of Theorem 1 is fulfilled.

sup
|u|p≤r

t∫
0

K1(t, τ)|f1(τ, u)|pdτ + sup
|w|p≤r+ρ

t∫
0

K2(t, τ)|f2(τ, w)|pdτ =

= sup
|u|p≤r

t∫
0

k1te
−k1(t−τ)eγ1τ | u2(τ)

1+u2(τ) |pdτ+

+ sup
|w|p≤r+ρ

t∫
0

k2te
−k2(t−τ)eγ2τ | sinw(τ)|pdτ ≤
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≤ k1te
−k1t(µ(Ω))

1
p

t∫
0

e(k1+γ1)τdτ+

+k2te
−k2t(µ(Ω))

1
p

t∫
0

e(k2+γ2)τdτ ≤

≤ k1te
−k1t (µ(Ω))

1
p

−(k1+γ1)
+ k2te

−k2t (µ(Ω))
1
p

−(k2+γ2)

Let us set

ψr,ρ(t) = k1te
−k1t (µ(Ω))

1
p

−(k1 + γ1)
+ k2te

−k2t (µ(Ω))
1
p

−(k2 + γ2)
.

We shall prove condition 3.1 of Theorem 1.

sup
|u|p≤r

∑
0<n<t

K1(t, t+n )|h1
n(u(tn))|p + sup

|w|p≤r+ρ

∑
0<n<t

K2(t, t+n )|h2
n(w(tn))|p =

= sup
|u|p≤r

∑
0<n<t

k1te
−k1(t−n)eα1n|2−u(tn)|p+

+ sup
|w|p≤r+ρ

∑
0<n<t

k2te
−k2(t−n)eα2n| 1

1+w2(tn) |p ≤

≤ k1te
−k1t(µ(Ω))

1
p

∑
0<n<t

e(k1+α1)n+

+k2te
−k2t(µ(Ω))

1
p

∑
0<n<t

e(k2+α2)n ≤

≤ k1te
−k1t(µ(Ω))

1
p eα1+k1

1−eα1+k1
+ k2te

−k2t(µ(Ω))
1
p eα2+k2

1−eα2+k2

Set

ϕr,ρ(t) = k1te
−k1t(µ(Ω))

1
p

eα1+k1

1− eα1+k1
+ k2te

−k2t(µ(Ω))
1
p

eα2+k2

1− eα2+k2
.

It is not hard to check if the functions χr,ρ(t), ψr,ρ(t) and ϕr,ρ(t) lie in the
space Lp(R+).

Condition 4 of Theorem 1 is fulfilled with

Φr,ρ(t, τ) = k2te
−k2t(µ(Ω))

1
p e(k2+γ2)τ ∈ L1(R+)

for any fixed t ∈ R+.
We shall show that condition 5 of Theorem 1 holds

χr,ρ(t) + ψr,ρ(t) + ϕr,ρ(t) =

= k1te
−k1t(r − (µ(Ω))

1
p 1

k1+γ1
+ (µ(Ω))

1
p eα1+k1

1−eα1+k1
)+

+k2te
−k2t(r + ρ− (µ(Ω))

1
p 1

k2+γ2
+ (µ(Ω))

1
p eα2+k2

1−eα2+k2
).
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From condition (14) we obtain

χr,ρ(t) + ψr,ρ(t) + ϕr,ρ(t) ≤ ρ for each t ∈ R+.

By means of a compactness criterion from [3] we shall prove condition 2.2.
Set

M(t) = {m(t) =

t∫

0

V2(t, τ)f2(τ, u1(τ) + v(τ))dτ : |v|p ≤ ρ}

is a compact subset of X for any fixed t.
Indeed,

|m(t)(x)| ≤ k2te
−k2t

t∫
0

e(k2+γ2)τ | sin(v(τ)(x) + u1(τ)(x))|dτ ≤

≤
t∫
0

e(k2+γ2)τdτ = 1
k2+γ2

(e(k2+γ2)t − 1), i.e.

(
∫
Ω

|m(t)(x)|pdx)
1
p ≤ 1

k2+γ2
(e(k2+γ2)t − 1)(µ(Ω))

1
p

and hence |m(t)(x)|p ≤ N (N -constant).
We show that

|m(t)(x + h)−m(t)(x)|p → 0 (h → 0).

This follows from the relations below

|m(t)(x + h)−m(t)(x)| ≤

≤
t∫
0

e(k2+γ2)τ | sin(v(τ)(x + h) + u1(τ)(x + h))− sin(v(τ)(x) + u1(τ)(x))|dτ ≤

≤
t∫
0

e(k2+γ2)τ |v(τ)(x + h)− v(τ)(x)|dτ +
t∫
0

e(k2+γ2)τ |u(τ)(x + h)− u(τ)(x)|dτ

In a similar way, we show the validily of condition 3.2.
The conditions of Theorem 1 are fulfilled and hence the ordinary equations

(1), (2) (i = 1, 2) are in Br Lp-equivalent. Hence, every solution u1(t, x) of
(10) − (13) (i = 1) induces a solution u2(t, x) of (10) − (13) (i = 2) such that
the function α1(t) = |u1(t, x)− u2(t, x)| lies in Lp(R+) for any x ∈ Ω .
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Lp-ЕКВИВАЛЕНТНОСТ МЕЖДУ ДВЕ НЕЛИНЕЙНИ
ИМПУЛСНИ ДИФЕРЕНЦИАЛНИ УРАВНЕНИЯ С
НЕОГРАНИЧЕНИ ЛИНЕЙНИ ЧАСТИ И ТЯХНОТО

ПРИЛОЖЕНИЕ ЗА ЧАСТНИ ИМПУЛСНИ
ДИФЕРЕНЦИАЛНИ УРАВНЕНИЯ

Атанаска Георгиева, Степан Костадинов

Резюме. С помощта на теоремата на Шаудер–Тихонов за неподвиж-
ната точка е доказана Lp-еквивалентност между две импулсни диференци-
ални уравнения с неограничени линейни части. Даден е пример от теорията
на частните импулсни диференциални уравнения от параболичен тип.
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